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Abstract. Quantum computing threatens current public-key cryptosys-
tems, driving the need for post-quantum cryptography (PQC). However,
PQC implementations face additional risks. We find implementation is-
sues in existing PQC libraries (e.g., pq-crystals and liboqs), while they
also fail to fully leverage modern processors. To address these issues,
we propose four optimization strategies: Branch Optimization, Register
Allocation, Vectorized Execution, and Secure and Efficient Pipelining.
These strategies minimize execution branches, instruction counts, and
memory accesses while enhancing security, mitigating the implementa-
tion from side-channel attack risk. We implement these in PQMagic, a
high-performance PQC library for ML-KEM and ML-DSA, and it sig-
nificantly outperforms state-of-the-art libraries. For ML-KEM-1024, it
achieves efficiency gains of up to 1.77x, 1.79x, and 1.52x for Keygen,
Encaps, and Decaps, while reducing instruction counts and memory ac-
cess overhead by up to 47.1% and 60.1%. For ML-DSA-87, it improves
Keygen, Sign, and Verify by up to 2.24x, 1.89x, and 2.04x, with in-
struction counts and memory access reduced by up to 44.4% and 64.5%.
Additionally, PQMagic eliminates up to 90.9% of branch operations
in matrix expansion for ML-DSA. Besides, PQMagic also outperforms
traditional cryptographic algorithm combinations (RSA-2048/ECDSA-
256 + ECDH) selected from OpenSSL. It only has a slight gap at the
highest level L5 compared to ECDSA-256 + ECDH combination. Our
work shows that combining modern hardware capabilities with careful
instruction scheduling enables secure and efficient PQC implementations,
paving the way for post-quantum cryptographic migration.
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1 Introduction

Quantum computing threatens to break many public-key cryptosystems cur-
rently in use. Consequently, research into post-quantum cryptography (PQC)
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focuses on developing cryptosystems secure against both quantum and classical
computers. Unfortunately, not all threats against PQC come from quantum com-
puting. As an empirical study [6] demonstrated, systems-level bugs—rather than
inherent flaws in the underlying ciphers—are a major contributor to security
vulnerabilities in many widely used cryptographic libraries. This conclusion also
applies to PQC libraries. Since PQC implementations must interoperate with
existing processors, operating systems, and networks, software security issues
like memory corruption remain a critical concern. Moreover, PQC libraries re-
main vulnerable to traditional side-channel attacks (e.g., those exploiting timing
leaks to extract secret-key information). Thus, it is critical to develop secure, ef-
ficient PQC software components and integrate them into modern cryptographic
infrastructure to mitigate both quantum and conventional threats.

PQC software especially PQC libraries, like other crypto software, need to
apply a rigorous security standard for their implemented code. We argue that
although many current crypto libraries have deployed various code securing
strategies (e.g, using specific hardware ISA such as AES-NI and SHA-NI to
secure the crypto operations, using formal verification to avoid non-constant
time execution), PQC libraries are less concerned. Even though a variety of
PQC crypto libraries have been developed, to the best of our knowledge, sel-
dom work thoroughly examined to what extent these libraries adopted secure
code implementation to protect them against common attacks. In this paper, we
first demonstrate the implementation issues in current PQC libraries and discuss
the risks. We found that our investigated PQC libraries (pq-crystals[7,10] and
liboqs[19]) did not fully leverage the features of modern processors, hence led to
a not-that-optimal code implementation that potentially increased the risks of
timing side-channel or secret information disclosure.

In response, we propose a series of code securing strategies that mainly uti-
lize four strategies to generate secure and efficient implementations of current
PQC ciphers such as ML-KEM and ML-DSA. We have implemented PQMagic,
a PQC library that followed the proposed code securing strategies and demon-
strated that our implementation significantly reduced execution branches, in-
struction counts, and memory accesses. In comparison with state-of-the-art op-
timized PQC libraries, the optimal implementation of PQMagic achieves sig-
nificant reductions in instruction counts and memory access overhead. For ML-
KEM-1024, these reductions reach up to 47.1% and 60.1%, respectively. Simi-
larly, for ML-DSA-87, PQMagic reduces instruction counts and memory access
overhead by up to 44.4% and 64.5%, respectively. Additionally, PQMagic suc-
cessfully eliminates branch operations in matrix expansion for ML-DSA by up
to 90.9% compared to state-of-the-art libraries. In terms of performance, PQ-
Magic significantly outperforms state-of-the-art optimized PQC libraries. For
ML-KEM-1024, PQMagic achieves efficiency gains of up to 1.77x, 1.79x, and
1.52x for Keygen, Encaps, and Decaps operations, respectively. Similarly, for
ML-DSA-87, PQMagic demonstrates improvements of 2.24x, 1.89x, and 2.04x
for Keygen, Sign, and Verify operations, respectively. Notably, we evaluate PQ-
Magic by combining ML-KEM and ML-DSA together against traditional cryp-
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tographic algorithm combinations (RSA-2048/ECDSA-256 + ECDH) selected
from OpenSSL. PQMagic outperforms the RSA-2048 + ECDH combination
across all security levels, achieving efficiency improvements of 4.77x at L1, 3.25x
at L3, and 2.67x at L5. When compared to ECDSA-256 + ECDH, PQMagic
maintains superior performance at L1 and L3 (1.58x and 1.07x, respectively),
with only a slight efficiency gap (0.88x) at the highest security level L5. These
results showed that security of PQC software implementation could benefit from
both new hardware ISAs and proper instruction scheduling.

2 Security Issues in Current PQC Implementations

The rapid evolution of modern CPU architectures has provided developers with
substantial hardware resources [4,8,12,18], such as vector instruction sets (e.g.,
AVX512), multi-level cache hierarchies, out-of-order execution, and superscalar
pipelines. These resources not only significantly improve the performance of code
implementations but also help mitigate security risks.

However, through extensive analysis of existing works [7,10,14,19,20,21], we
have found that many implementations of ML-KEM and ML-DSA often over-
look security issues in the pursuit of performance optimization, fail to fully uti-
lize the features and resources of modern CPUs. For instance, the pq-crystals
library [7,10] optimizes ML-KEM and ML-DSA using only the AVX2 instruc-
tion set, while liboqs [19] provides further encapsulation based on this work.
Although these open-source libraries have made some progress in performance
optimization, they still fall short in mitigating the security risk of algorithm im-
plementations. Its frequent memory accesses and branch-heavy code structures
not only hinder further performance improvements but also introduce risks such
as timing side-channel attacks and memory exposure. Moreover, as these libraries
do not fully leverage the architectural advantages of modern CPUs, there re-
mains significant room for performance optimization. As for some closed-source
optimizations [20,21], while they claim to utilize the AVX512 instruction set for
performance gains, they also lack a thorough consideration of algorithm secu-
rity and fail to fully exploit instruction pipeline optimizations to enhance both
security and computational efficiency.

To provide a more concrete illustration of the security risks in existing algo-
rithm implementations, we analyzed the implementation details of the state-of-
the-art open-source libraries, pq-crystals [7,10] and liboqs [19]. As shown in Fig-
ure 1, both pq-crystals and liboqs use switch-case structures in their source code.
The switch-case structure generates multiple branch instructions after compila-
tion. When branch prediction fails, the CPU must flush the pipeline and reload
instructions, incurring performance penalties. Beyond these computational inef-
ficiencies, the current implementation exhibits suboptimal design characteristics.
This branch-heavy pattern represents poor programming practice, as its adop-
tion in other code contexts could potentially introduce additional side-channel
security risk.
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static inline void polyvec_matrix_expand_row (/* ... */ ) {
switch(i) {

case 0:
polyvec_matrix_expand_row0 (buf, buf + 1, rho);
*row = buf;
break;

case 1:
polyvec_matrix_expand_row1 (buf + 1, buf, rho);
*row = buf + 1;
break;

/* Many Other Cases */
case 7:

polyvec_matrix_expand_row7 (buf + 1, buf, rho);
*row = buf + 1;
break;

}
}

Fig. 1: Risky Branch-Prone Control Flow Pattern in pq-crystal[10] and liboqs[19]

To further verify the potential security risks introduced by the branching
structure in the source code, we conducted a comprehensive reverse engineering
analysis of binaries compiled with O3 optimization. We found that the com-
piler retained the switch-case branch structures in all cases except the lowest
security level parameter set (i.e., ML-DSA-44), failing to optimize them. This
indicates that switch-case structures will truly risk the algorithms in real-world
deployments.

Additionally, Figure 2 shows that these implementations involve extensive
memory read/write operations. Each macro function is called four times and
contains multiple memory operations. This design introduces high memory ac-
cess overhead, which also suffers a significant risk of memory exposure. The high
frequency of memory accesses increases the risk of cache side-channel vulnerabil-
ities, through which sensitive data could potentially be extracted by attackers.

3 Method

To mitigate security issues in the code optimization process while further improv-
ing algorithm execution efficiency, we propose the following four optimization
strategies:

– Branch Optimization: Reducing complex branches to reduce the impact
of misprediction while demonstrating a coding paradigm that inherently mit-
igates side-channel risks across all coding scenarios.

– Register Allocation: Maximizing data residency in registers to reduce
memory accesses, thereby lowering the risk of data leakage through cache
access patterns.
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.macro levels2t7 off
/* level 2 */
vmovdqa /*offset*/ (%rdi),%ymm4
/* 7 More vmovdqa */
vpbroadcastd

/*offset*/ (%rsi),%ymm1↪→

vpbroadcastd
/*offset*/ (%rsi),%ymm2↪→

/* Other Operations */

/* level 3 */
vmovdqa /*offset*/ (%rsi),%ymm1
vmovdqa /*offset*/ (%rsi),%ymm2
/* Other Operations */

/* level 4 */
vmovdqa /*offset*/ (%rsi),%ymm1
vmovdqa /*offset*/ (%rsi),%ymm2
/* Other Operations */

/* ... */

/* level 7 */
/* ... */

/* Store the Result Back */
vmovdqa %ymm9,/*offset*/ (%rdi)
/* 7 More vmovdqa */
.endm

.macro levels0t1 off
/* level 0 */
vpbroadcastd

/*offset*/ (%rsi),%ymm1↪→

vpbroadcastd
/*offset*/ (%rsi),%ymm2↪→

vmovdqa /*offset*/ (%rdi),%ymm4
/* 7 More vmovdqa */
/* Other Operations */

/* level 1 */
vpbroadcastd

/*offset*/ (%rsi),%ymm1↪→

/* 3 More vpbroadcastd */
/* Other Operations */

vmovdqa %ymm4,/*offset*/ (%rdi)
/* 7 More vmovdqa */
.endm

.text

.global cdecl(ntt_avx)
cdecl(ntt_avx):
vmovdqa _8XQ*4(%rsi),%ymm0
levels0t1 0
/* 3 more levels0t1 */
levels2t7 0
/* 3 more levels2t7 */
ret

Fig. 2: Risky Memory Access Patterns in NTT Implementations in pq-crystal
and liboqs

– Vectorized Parallel Execution: Leveraging SIMD instructions to accel-
erate computations, reducing the total number of instructions required for
the same operation as well as improving data parallelism, and thus short-
ening execution time. This helps mitigate certain security threats, such as
timing side-channel attacks, by minimizing the time window available for
adversarial observation.

– Secure and Efficient Pipelining: Mitigating the risk of the compiler in-
troducing unsafe data dependencies or control dependencies that could in-
advertently leak information [16] by directly writing assembly codes, while
optimizing execution order to better align with CPU pipeline structures for
both security and performance.

This section will detail how these optimization strategies work together to
enhance algorithm security while fully leveraging the performance potential of
modern hardware architectures.
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3.1 Branch Optimization

Our design employs a branch optimization strategy that systematically elim-
inates unnecessary branching dependencies. This architectural decision stems
from the performance challenges associated with conditional branching, where
variable execution timing can disrupt pipeline efficiency and computational pre-
dictability.

By replacing conventional switch-case constructs with dedicated function im-
plementations for each logical path, we achieve more deterministic execution be-
havior. The branch-free design not only ensures consistent processing timelines
but also establishes a better coding paradigm.

The optimized architecture consolidates all polynomial sampling operations
into a unified function implementation. By eliminating branching constraints,
this approach achieves full utilization of AVX512 instruction sets, enabling si-
multaneous processing of eight polynomials with enhanced compiler optimiza-
tion opportunities. Furthermore, the reduction in function call overhead also
contributes to overall execution efficiency and system stability.

3.2 Register Allocation

Memory access latency is a critical bottleneck in secure and high-performance
computing. To mitigate this issue, we prioritize storing critical data (e.g., poly-
nomial coefficients) in registers, minimizing memory accesses and reducing the
risk of data leakage through cache access patterns.

Modern AVX512 registers provide robust hardware support for secure and
efficient computation. Each register can store 512 bits of data, and with AVX512
instruction set, the number of available registers is expanded to 32. This allows
us to retain more data in registers, reducing reliance on memory and mitigating
potential side-channel vulnerabilities.

For the ML-KEM algorithm, every polynomial contains 256 coefficients, with
each coefficient being 12 bits long (stored as 16-bit values). This requires only
8 AVX512 registers to store all coefficients. Similarly, for the ML-DSA algo-
rithm, every polynomial consists of 256 coefficients, with each coefficient being
23 bits long (stored as 32-bit values), requiring only 16 AVX512 registers. Even
after allocating registers for coefficient storage, there remain 24/16 available
512-bit registers for ML-KEM/ML-DSA, which can be leveraged for intermedi-
ate computations. By preloading polynomial coefficients into registers, we min-
imize memory access patterns that could otherwise be exploited in cache-based
side-channel attacks.

3.3 Vectorized Parallel Execution

Modern CPUs provide SIMD instruction sets such as AVX512, which allow us
to process multiple data elements in configurations like 32×16-bit or 16×32-
bit simultaneously. This capability is particularly beneficial for cryptographic
algorithms such as Keccak-1600 and polynomial arithmetic in ML-KEM as well
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as ML-DSA, where efficient parallelism not only accelerates computation but also
enhances security by reducing exposure to timing-based side-channel attacks.

For Keccak-1600, AVX512 enables up to 8-way parallel processing of inde-
pendent hash operations, allowing multiple 64-bit state computations to be per-
formed simultaneously within a single instruction cycle. Similarly, ML-KEM and
ML-DSA rely heavily on polynomial arithmetic, where coefficients are stored as
32-bit and 16-bit values, respectively. Since computations on different coefficients
exhibit minimal data dependency, they are well-suited for vectorized execution.
By utilizing AVX512, multiple coefficients can be processed in parallel within a
single register, effectively reducing the total number of instructions required for
the same operation. This not only improves execution efficiency but also narrows
the attack window for adversaries, further mitigating the risk of side-channel at-
tacks.

IF ID

IF ID

Scheduler

Scheduler

FADD
2 cycles

FADD
2 cycles

FMUL
4 cycles

FMUL
4 cycles

LD/ST
1 cycle

LD/ST
1 cycle

Other Units

Fig. 3: Illustration of Modern CPU Pipeline

3.4 Secure and Efficient Pipelining

Instruction pipelining is a fundamental mechanism for achieving instruction-level
parallelism (ILP) [1,2]. We directly use assembly code to implement algorithm
components, controlling instruction scheduling order. Then we take advantage of
multiple execution units in modern superscalar processors, optimally arranging
similar types of assembly instructions together, rather than simply interleav-
ing different types of instructions. Therefore, we reduce potential security risks
introduced by compilers [16] while improving the ILP.

Specifically, modern processors (e.g., AMD and Intel CPUs) enhance paral-
lelism through superscalar architecture [8,12,18], which provides the following
key features:

– Multiple Execution Units: Independent functional units (e.g., integer
ALUs, FPUs, load/store units) allow concurrent execution of heterogeneous
operations, reducing control dependencies that could leak execution timing
variations.
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– Multi-Issue Capability: Modern CPUs can fetch, decode, and dispatch
multiple instructions per cycle, enabling higher throughput while minimizing
compiler-induced timing variations.
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(a) Instruction Scheduling with Low Parallelism
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(b) Optimized Instruction Scheduling with Improved Parallelism

Fig. 4: Comparison of Instruction-Level Parallelism Before and After Optimiza-
tion on a Superscalar CPU

Figure 3 shows a simplified diagram of a modern superscalar CPU pipeline
structure, including two instruction fetch (IF) units, two instruction decode (ID)
units, two instruction scheduler units, and six execution units with three different
types (i.e., FADD, FMUL, and LD/ST).

To illustrate the security and performance benefits of increasing ILP on super-
scalar CPUs, we designed a toy example consisting of 12 instructions, as shown
in Figure 4. We aim to compare different instruction scheduling schemes on
our simplified CPU architecture (Figure 3). We then ensure that the optimized
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scheduling scheme achieves improved performance while mitigating compiler-
introduced security risks at the same time.

In Figure 4a, although instructions are interleaved to facilitate parallel execu-
tion across different execution unit types, the lack of consideration for parallelism
within the same type of execution units leads to 2 pipeline stalls, requiring 14
cycles to complete.

In contrast, the optimized secure instruction scheduling scheme in Figure 4b
carefully arranges instructions to balance execution across different execution
units. By overlapping instructions of the same type and filling idle cycles of
high-latency instructions with other types, the schedule eliminates pipeline stalls
successfully. This approach reduces the total cycle count to 12, improving per-
formance by 14.3%. Besides that, manually scheduling the instruction pipeline
using hand-writing assembly directly could naturally mitigate the risk of timing
side-channel attacks introduced by compilers.

4 PQMagic

In this section, we present our PQC library, PQMagic4. It applies optimization
strategies proposed in Section 3 and systematically reduces the risk of security
issues while improving computational efficiency for ML-KEM/ML-DSA imple-
mentation. The implementation of PQMagic focuses on securing three critical
operations: polynomial arithmetic, hash components, and matrix expan-
sion.

For polynomial arithmetic, we employed the Register Allocation to max-
imize data residency, Vectorized Parallel Execution to accelerate computations,
and Secure and Efficient Pipelining to optimize instruction scheduling, ensuring
both efficiency and mitigation to side-channel attacks. For hash components,
we leveraged Vectorized Parallel Execution to process multiple data elements
simultaneously, reducing the total number of instructions and minimizing the
time window for potential timing attacks. For matrix expansion, we applied
Branch Optimization to eliminate complex conditional branches introduced by
switch-case structure, which reduces the risk of timing side-channel attacks. Be-
sides, it gives an opportunity for parallelism sampling in matrix expansion and
avoids performance penalties caused by frequent branch mispredictions.

The remainder of this section provides a detailed explanation of how these
strategies are applied to optimize the implementation of the three critical oper-
ations.

4.1 Polynomial Arithmetic

Polynomial arithmetic remains one of the most computationally intensive core
operations in both ML-KEM and ML-DSA algorithms, and its performance and
security significantly impact the overall efficiency of these cryptographic schemes.

4 https://pqcrypto.dev/
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Among the components of polynomial arithmetic, the Number Theoretic Trans-
form (NTT) and its inverse operation (INTT) are particularly critical, as they
not only dominate the computational cost but also present a potential attack
surface. Therefore, to enhance both the security and efficiency of polynomial
arithmetic, we focused on optimizing NTT operations, aiming to reduce their
vulnerability to side-channel attacks while improving their execution efficiency.

Modern processors widely support the AVX512 instruction set, which pro-
vides 512-bit registers and expands the number of registers to 32. Leveraging this
capability, we apply Register Allocation and Vectorized Parallel Execution strate-
gies to PQMagic. First, we maximized the advantages of AVX512 by preloading
all coefficients required for NTT operations into the registers, thereby reducing
the risk of memory exposure and eliminating the performance overhead caused
by repeated memory access. Specifically, in the ML-KEM algorithm, a polyno-
mial consists of 256 coefficients of 12 bits each, which can be entirely stored in
just 8 AVX512 registers. Similarly, in the ML-DSA algorithm, a polynomial con-
tains 256 coefficients of 23 bits, requiring only 16 AVX512 registers for storage.

0 1 2 3 13 14 15

ZMM0

.........

ZMM8

... ......

0 1 2 3 13 14 15 ......... ... ......

Layer
0

128 129 130 131 141 142 143

128 129 130 131 141 142 143

Fig. 5: NTT Layer 0 For ML-DSA

By consolidating all coefficient data into registers, this approach improves
data locality and cache hit rates. As a result, by leveraging the data storage
capabilities of AVX512 registers, the optimized NTT/INTT operations require
only a single memory read for each coefficient and each root value, and a single
memory write to store the results after computation. All other computations are
performed entirely within the registers, eliminating additional memory access.
Therefore PQMagic could minimize the risk of memory data exposure and
improve the execution efficiency.

In addition to enhancing data parallelism, we further applied Secure and Ef-
ficient Pipelining strategy to directly use assembly code, optimizing instruction
scheduling and improving ILP. As shown in Figure 5, the first layer of NTT
operations in ML-DSA reveals that only two coefficient registers (e.g., ZMM0
and ZMM8) exhibit data dependencies during execution, while the remaining
registers operate independently. Leveraging this feature, we could interleave op-
erations of different coefficient registers, fully utilizing the parallel capabilities
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of the instruction pipeline and the out-of-order execution capabilities of modern
processors.

Instruction CPI (Intel CPU) CPI (AMD CPU)

vmovdqa32 0.5 0.5
vpaddw/vpsubw 0.5 0.25
vpaddd/vpsubd 0.5 0.25
vpmullw/vpmulhw 0.5/1.0 0.5
vpmuldq 0.5/1.0 0.5

Table 1: Instruction CPI on Different CPU platforms.

Furthermore, we carefully considered the features of modern superscalar pro-
cessors, aiming to utilize multiple execution units. By referencing [3,13], we an-
alyzed the number of parallel execution units for vector instructions in modern
CPUs. Table 1 lists the CPI (Cycles Per Instruction) values for key instructions
frequently used in NTT operations across common CPU platforms. CPI reflects
the average number of cycles required to execute the instruction. It also indi-
rectly indicates the number of parallel execution units. Based on this data, we
further optimized the instruction scheduling strategy. When the CPI value is
small, it indicates more parallel execution units. In this case, we carefully ar-
ranged identical instructions together to fully utilize hardware resources. When
the CPI value is large, we filled gaps between such instructions with other opera-
tions to prevent pipeline stalls. This strategy maximizes ILP, while also reducing
time-window for adversaries. Besides, using assembly code directly allows us to
avoid compiler-induced execution variations that could lead to security issues [16]
naturally.

4.2 Hash Components

The SHAKE hash function serves as a core cryptographic primitive in both ML-
KEM and ML-DSA, and its computational efficiency and security directly impact
the overall performance and robustness of these algorithms. We thus applied
Vectorized Parallel Execution strategies for optimizing the Keccak-1600 structure
in SHAKE, focusing on enhancing parallel computation while mitigating timing-
based side-channel risks.

By leveraging the 512-bit wide vector registers provided by AVX512, we can
enable parallel processing of up to 8 independent hash operations within a single
instruction cycle. The degree of parallelism is doubled compared to the AVX2
version, increasing from 4-way to 8-way. This optimization not only increases
throughput but also reduces the total number of instructions required for the
same amount hash operation. Fewer instructions mean a shorter execution time,
which naturally narrows the time window available for adversaries to observe and
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exploit timing variations, thereby reducing the risk of timing-based side-channel
attacks.

Additionally, our strategy helps to minimize data loading and storage latency
by processing multiple data elements simultaneously within registers, reducing
the frequency of memory accesses when doing hash operations, further mitigating
the risk of cache-based side-channel attacks.

4.3 Matrix Expansion

In the implementation of matrix expansion, we applied Branch Optimization
to eliminate complex conditional branches introduced by switch-case structures.
The optimized implementation demonstrates superior programming practices
by employing uniform execution paths across all operations. This design choice
not only enhances code reliability but also eliminates performance fluctuations
caused by conditional branch mispredictions.

By unrolling the switch-case operations, we achieve both more efficient com-
piler optimization potential and better parallel processing capabilities. Specifi-
cally, through branch optimization, we consolidate all polynomial sampling op-
erations into a single unified function. This integrated approach processes the
entire matrix by grouping polynomials in sets of eight, fully leveraging the par-
allel processing capabilities of AVX512 instructions. The implementation not
only enhances execution consistency and stability, but also significantly reduces
function call overhead. Therefore, this approach achieves improved performance
for matrix expansion while showing a better coding paradigm that inherently
reduces potential side-channel risks across all execution scenarios.

5 Evaluation

In this section, we conducted a comprehensive evaluation of the strategies im-
plemented in PQMagic, focusing on security risk mitigation, performance im-
provements and practical applicability with a case study.

5.1 Experimental Setup

We evaluated PQMagic on an x64 platform featuring an AMD Ryzen 5 9600X
processor and 256 GB RAM, with a Debian 12 OS. For our comparative eval-
uation, we conducted a comprehensive survey of existing implementations and
identified: two state-of-the-art open-source libraries (pq-crystals [7,10] and li-
boqs [19]), as well as two recent works employing AVX-512 optimizations [20,21].
To ensure both reproducibility and fair comparison, we ultimately selected im-
plementations with publicly available source code as our benchmark targets,
i.e., the pq-crystals and liboqs libraries. From these libraries, we derived three
datasets for evaluation:
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– pq-crystals-portable: The baseline implementation from pq-crystals, rep-
resenting an unoptimized version of ML-KEM and ML-DSA. Note that the
commit versions we selected for these two algorithms are 4768bd37 and
444cdcc8 respectively.

– pq-crystals-opt: An optimized version from pq-crystals, leveraging AVX2
instructions to enhance performance. The commit versions for both ML-
KEM and ML-DSA are the same as pq-crystals-portable.

– liboqs: A further refined version from liboqs, which integrates and encap-
sulates pq-crystals’ implementations while providing additional component-
level adjustments. The selected commit version is 5450d7c2.

To maximize the performance of the comparison targets in our dataset, we
compiled each project with the highest optimization level (-O3 ) and enabled
architecture-specific optimizations by specifying -march=native. This compila-
tion setting allows the compiler to fully utilize all available CPU instruction sets
(including AVX-512) for optimal code generation.

pq-crystals-portable pq-crystals-opt liboqs PQMagic

ML-DSA-44 2 1 1 1
ML-DSA-65 2 9 9 1
ML-DSA-87 2 11 11 1

Table 2: Comparison of Branch Operation Numbers in Matrix Expansion Func-
tion Across Libraries.

5.2 Evaluation of Security Strategies in PQMagic

To validate the effectiveness of our optimization strategies, we designed to com-
pare PQMagic’s branch number in matrix expansion operation, total instruc-
tion number and memory operations against three implementations in our dataset.

Branch Reduction in Matrix Expansion First, we compared the number
of branches in the matrix expansion operation across all implementations. All
code was compiled with the highest optimization flags (-O3, -march=native),
and the resulting binaries were comprehensively reverse-engineered to count the
branches in the matrix expansion operation. The results are shown in Table 2.
PQMagic achieved the fewest branches: for ML-DSA-87 parameter set, the
highest security level (L5), the branch count was reduced from 11 in both pq-
crystals-opt and liboqs to just 1 in PQMagic. This reduction is attributed to
the elimination of nested loops in the sampling process, which typically generate
two branches. For the ML-DSA-65 parameter set, PQMagic reduced the branch
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count from 9 in pq-crystals-opt and liboqs to 1. For the ML-DSA-44 parame-
ter set, compiler optimizations result in pq-crystals-opt and liboqs achieving a
branch count of 1, matching PQMagic’s performance in this regard. In contrast,
the unoptimized pq-crystals-portable implementation retained 2 branches due
to its nested loop structure. These results demonstrate that PQMagic’s branch
optimization strategy successfully minimizes branch counts, reducing the risk
of timing side-channel attacks and improving execution stability by mitigating
branch misprediction penalties.
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Fig. 6: Compare the number of instructions of PQMagic’s implementation of
ML-KEM and ML-DSA under the highest security parameters with other open
source library implementations
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Instruction Count and Memory Access Reduction Then, we compared
the number of instructions and memory access operations in PQMagic against
the other implementations. To ensure fairness in testing, we fixed identical in-
put values for all test cases, including random numbers, signed messages, and
signature contexts. This design guarantees that each implementation performs
the same operation routines.

Figure 6 and Figure 7 shows the results for ML-KEM and ML-DSA at their
highest security levels (L5). Compared to the performance-optimized pq-crystals-
opt implementation, PQMagic reduced the instruction count for ML-KEM’s
Keygen, Encaps, and Decaps operations by 45.1%, 41.5%, and 15.9%, respec-
tively, while memory access overhead was reduced by 44.5%, 40.7% and 9.8%.
Compared to liboqs, PQMagic achieved reductions of 47.1%, 43.6%, and 24.6%
in instruction count and 60.1%, 56.9%, and 32.3% in memory access overhead
for the same operations. Against the unoptimized pq-crystals-portable imple-
mentation, PQMagic reduced instruction counts by 91.2%, 91.4%, and 88.1%,
and memory access overhead by 94.6%, 94.7%, and 92.2% for Keygen, Encaps,
and Decaps respectively.

For ML-DSA, PQMagic outperformed pq-crystals-opt by reducing instruc-
tion counts for Keygen, Sign, and Verify operations by 44.2%, 42.6%, and 40.2%,
respectively, and memory access overhead by 61.6%, 51.2%, and 64.5%. Com-
pared to liboqs, PQMagic achieved reductions of 44.4%, 41.3%, and 36.5%
in instruction count and 50.8%, 38.2%, and 50.9% in memory access overhead
for Keygen, Sign, and Verify respectively. Against the unoptimized pq-crystals-
portable implementation, PQMagic reduced instruction counts by 88.5%, 91.9%,
and 87.9%, and memory access overhead by 90.0%, 92.7%, and 91.3% for each
operation.

These results highlight that we lower the risk of data leakage through memory
access patterns and minimize the time window available for adversarial observa-
tion. As a result, these strategies raise the bar for potential attackers, making it
more challenging to exploit side-channel vulnerabilities.

5.3 Performance Analysis of ML-KEM Implementation

In the performance evaluation of the ML-KEM algorithm, we adopt the same
testing methodology as described in Section 5.4. As illustrated in Figure 8, PQ-
Magic achieves significant performance improvements compared to other im-
plementations. Against pq-crystals, PQMagic demonstrates speedups of 1.27x,
1.24x, and 1.19x in Keygen, Encaps, and Decaps operations, respectively. Com-
pared to liboqs, PQMagic increase the performance by 1.77x, 1.79x, and 1.52x
for the same operations. When compared to the unoptimized pq-crystals-portable
implementation, PQMagic delivers even more substantial gains, with perfor-
mance improvements of 8.05x, 7.83x, and 8.53x in Keygen, Encaps, and Decaps,
respectively.
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Fig. 7: Compare the number of memory operations of PQMagic’s implementation
of ML-KEM and ML-DSA under the highest security parameters with other open
source library implementations

5.4 Performance Analysis of ML-DSA Implementation

In this section, we conduct a performance evaluation of the PQMagic ML-DSA
implementation. We ran each benchmark binary within 3 seconds, recording
the number of algorithm executions for each test. The results of the ML-DSA
comparison with the highest level of security parameters [9] are shown in Fig-
ure 8. The results demonstrate that PQMagic significantly outperforms other
implementations. Compared to pq-crystals, PQMagic achieves performance im-
provements of approximately 1.90x in Keygen, 1.74x in Sign, and 1.83x in Verify.
When compared to liboqs, PQMagic shows even greater gains, with speedups
of 2.24x, 1.89x, and 2.04x for Keygen, Sign, and Verify, respectively. Against the
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Fig. 8: Comparison of operations per second for PQMagic implementation of
ML-KEM and ML-DSA at highest security parameters with other open source
library implementations.

unoptimized pq-crystals-portable implementation, PQMagic delivers remark-
able improvements of 6.40x, 9.54x, and 6.24x for the same operations.

5.5 Case Study

Post-quantum cryptographic algorithms are inherently more complex than tra-
ditional cryptographic algorithms, inevitably introducing higher computational
and storage overhead, which poses significant challenges for post-quantum cryp-
tographic migration. To evaluate the contributions of PQMagic to post-quantum
cryptographic migration, we designed the following experiments to assess the
performance of the migrated algorithms.

We selected the widely used TLS 1.3 protocol to evaluate the impact of
cryptographic algorithms on handshake performance and designed a simplified
model for establishing secure connections. Specifically, this model retains only
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the core processes of key exchange and authentication while excluding external
interference factors such as network latency and packet loss.

In our experiments, we simulated key exchange and authentication workflows
using post-quantum cryptographic algorithms (ML-DSA + ML-KEM) and tra-
ditional algorithms (RSA-2048/ECDSA-256 + ECDH), conducting a compar-
ative analysis between PQMagic implementations at L1/L3/L5 security lev-
els and traditional algorithm implementations from the state-of-the-art library
OpenSSL [15]. Note that, ML-DSA-44 is at L2 security level, while ML-KEM-
512 only reaches L1. So, we treated ML-DSA-44 + ML-KEM-512 as the minimal
security level of its components, i.e., L1. As shown in Figure 9, the results demon-
strate that PQMagic outperforms the RSA-2048 + ECDH combination across
all security levels. At the L1 security level, PQMagic achieves a 4.77x efficiency
improvement over RSA-2048 + ECDH. At the L3 and L5 security levels, the
improvements are 3.25x and 2.67x, respectively. When compared to the more
efficient ECDSA-256+ECDH combination, PQMagic still shows superior per-
formance at the L1 and L3 security levels, with efficiency improvements of 1.58x
and 1.07x, respectively. At the highest L5 security level, PQMagic’s efficiency
is slightly lower, at 0.88x compared to ECDSA-256 + ECDH.

Given that the L3 security level already meets NIST’s recommended require-
ments and the performance gap at L5 is only 9 microseconds, these results high-
light PQMagic’s strong practicality and its potential to facilitate the transition
to post-quantum cryptography.
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6 Related Work

The optimization of post-quantum cryptographic algorithms has been widely
studied. Gueron et al. [11] proposed a vectorized sampling step for accelerat-
ing lattice-based key exchange, laying the groundwork for efficient implemen-
tations of post-quantum primitives. Seiler [17] introduced an AVX2-optimized
implementation of the Number Theoretic Transform (NTT) for ring-LWE-based
cryptography, which became a cornerstone for subsequent optimizations. These
techniques were further adopted and extended in the pq-crystals library, which
implemented the Kyber [7] and Dilithium [10] algorithms (later standardized
as ML-KEM [5] and ML-DSA [9] by NIST) using AVX2 instructions for core
operations.

Recent advancements have focused on leveraging the AVX512 instruction set
for further optimizations. Lei et al. [14] proposed parallel polynomial sampling
and arithmetic operations using AVX512, improving the efficiency of ML-DSA.
Zheng et al. [21] introduced PSPM-TEE, an optimized vectorization approach
for polynomial multiplication for ML-DSA. Besides that, Zheng et al. [20] also
optimize ML-KEM using AVX512, integrating it into the TLS 1.3 protocol.
However, these works did not fully exploit the capabilities of modern superscalar
CPU pipelines or discuss potential security risks in their implementations.

7 Conclusion

In this paper, we first identify several security issues in existing PQC imple-
mentations, which also fail to fully leverage the resource advantages of modern
CPUs to enhance performance. To address these issues, we propose four opti-
mization strategies that reduce branch counts, instruction counts, and memory
access operations. Based on these optimization strategies, we implement PQ-
Magic, demonstrating that it not only achieves lower security risks compared to
state-of-the-art implementations but also delivers superior performance. Notably,
PQMagic even surpasses the execution efficiency of traditional cryptographic
algorithms, showcasing its strong practicality and providing robust support for
the transition to post-quantum cryptography.

While our optimization approach delivers significant performance gains, it
has inherent limitations regarding portability and maintainability. The AVX-
512 dependency limits portability to other architectures, and assembly codes
reduce code readability. These trade-offs make our approach best suited for
performance-critical scenarios with fixed hardware targets.
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Innovation Action Plan Special Project (23511100900).
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